The Text Reception Threshold as a Measure for the Non-Auditory Components of Speech Understanding in Noise

Jana Besser1 \hspace{1cm} j.besser@vumc.nl
A.A. Zekveld1,2,3
S.E. Kramer1
J. Rönnberg2,3
J. M. Festen1

1 = ENT/Audiology & EMGO Institute for Health and Care Research, VU University medical center Amsterdam
2 = Linnaeus Centre HEAD, The Swedish Institute for Disability Research
3 = Department of Behavioral Sciences and Learning, Linköping University, Linköping

The online version of this presentation shows reduced results because the data analysis is still ongoing.
text reception threshold (TRT)

Visual analogue to Speech Reception Threshold

→ measure the non-auditory side of speech comprehension

"the driver looks at his watch"

46% of text visible

52% of text visible

“the driver looks at his watch”
the story of this study

background: reported associations of SRT with WM capacity and processing speed

weak associations of TRT with these factors

aim: strengthen TRT’s associations with WM capacity and speed

approach: 4 new TRT versions with increased speech anlogy (timing, volatility)

evaluation: test TRT versions along with SRTs, WM capacity, processing speed

population: 55 NH healthy adults, age 18 – 78

<table>
<thead>
<tr>
<th>age</th>
<th>N</th>
<th>% men</th>
<th>edu</th>
<th>PTA\textsubscript{TEST}</th>
<th>PTA\textsubscript{NON}</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 30</td>
<td>11</td>
<td>36.4</td>
<td>5.9</td>
<td>3.5</td>
<td>4.4</td>
</tr>
<tr>
<td>30-39</td>
<td>11</td>
<td>18.2</td>
<td>6.2</td>
<td>3.3</td>
<td>5.1</td>
</tr>
<tr>
<td>40-49</td>
<td>13</td>
<td>23.1</td>
<td>6.3</td>
<td>6.2</td>
<td>8.9</td>
</tr>
<tr>
<td>50-59</td>
<td>12</td>
<td>33.3</td>
<td>5.9</td>
<td>10.4</td>
<td>12.3</td>
</tr>
<tr>
<td>>= 60</td>
<td>8</td>
<td>25.0</td>
<td>4.5</td>
<td>11.7</td>
<td>15.9</td>
</tr>
<tr>
<td>total</td>
<td>44.0</td>
<td>55</td>
<td>27.3</td>
<td>5.9</td>
<td>6.8</td>
</tr>
</tbody>
</table>

PTA calculated on octaves .5 - 4 kHz
tests administered

SRT (speech reception threshold)
- Signal-to-noise ratio needed to correctly understand 50% of sentences
 - lower = better
- in stationary noise (SRT_{STAT}) and in fluctuating noise (SRT_{MOD})
- 3 test runs per masker

TRT (text reception threshold)
- Percentage of unmasked text needed to correctly read 50% of sentences
 - lower = better
- 5 versions
- 4 test runs per version

RSpan (reading span)
- Test of Working Memory (WM) capacity
- 12 blocks of 3-6 semantically correct & incorrect sentences
- task: judge semantics (good/nonsense), recall target words (subjects and objects)
- absolute no. recalled words, max = 54
 - higher = better

LDST (letter-digit-substitution test)
- Test of processing speed
- absolute number of correctly substituted letters
 - higher = better
TRT test versions

TRT\textsubscript{ORIGINAL}

The subject reads aloud a bar-masked sentence, which is built up word-wise. The full sentence remains on the screen for 3500 ms.

TRT\textsubscript{500}

Like $TRT\textsubscript{original}$ but the presentation time of the full sentence is reduced to 500 ms.

TRT\textsubscript{CENTER}

Sentence words are presented one at a time in the center of the screen.

TRT\textsubscript{MOVING}

Sentence words are presented one at a time at their sentence-specific positions.

TRT\textsubscript{MEMORY}

Like $TRT\textsubscript{500}$ but the subject reads two sentences in a row before repeating both.
The new TRT tests are more difficult, have a larger range, and a higher reliability.
summary of results & conclusions

• new TRT tests:
 more difficult, larger score range, higher reliability
 stronger associations with WM capacity and processing speed

• all TRT tests correlate with SRT\textsubscript{MOD}, some with SRT\textsubscript{STAT}

• controlling for age:
 only TRTs with memory components correlate with working memory capacity
 SRTs do not correlate with WM capacity or processing speed
 correlations of TRTs with SRTs remain, though weaker

• TRT\textsubscript{500} strongest TRT predictor for the SRT\textsubscript{MOD}
 (variance in SRT\textsubscript{MOD} explained by age and TRT\textsubscript{500}: 49%)
• TRT\textsubscript{CENTER} strongest TRT predictor for the SRT\textsubscript{STAT}
 (variance in SRT\textsubscript{STAT} explained by education and TRT\textsubscript{CENTER}: 29%)

• assumption that TRT should correlate with our (current tests of) WM capacity and processing speed needs to be revised

• other cognitive factors might be more relevant for speech understanding, i.e., linguistic skills like vocabulary size